

1 **Title:**

2 **Changes in soil carbon and nutrients following six years of litter removal and addition in a tropical
3 semi-evergreen rain forest.**

4

5 **Authors**

6 **Edmund Vincent John Tanner^{1,2}, Merlin William Alfred Sheldrake¹, and Benjamin L. Turner²**

7 **¹Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK.**

8 **²Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of
9 Panama.**

10 ***Correspondence to: E. V. J. Tanner (evt1@cam.ac.uk)***

11 **Abstract**

12 Increasing atmospheric CO₂ and temperature may increase forest productivity, including litterfall,
13 but the consequences for soil organic matter remain poorly understood. To address this, we
14 measured soil carbon and nutrient concentrations at nine depths to 2 m after six years of continuous
15 litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition
16 plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-
17 extractable nitrate (both to 30 cm); Mehlich-III extractable phosphorus and total carbon (both to 20
18 cm); total nitrogen (to 15 cm); Mehlich-III calcium (to 10 cm); Mehlich-III magnesium and lower bulk
19 density (both to 5 cm). In contrast, litter manipulation did not affect ammonium, manganese,
20 potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with
21 previous analyses in the experiment indicates that overall the effect of litter manipulation on
22 nutrient concentrations and the depth to which the effects are significant are increasing with time.
23 To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total
24 carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m⁻² of mineral soil
25 (approximately the upper 20 cm of the profile) about 0.5 kg C m⁻² was 'missing' from the litter
26 removal plots, with a similar amount accumulated in the litter addition plots. There was an
27 additional 0.4 kg C m⁻² extra in the litter standing crop of the litter addition plots compared to the
28 control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a
29 potential partial mitigation of the effects of increasing CO₂ concentrations in the atmosphere.

30

31 **1 Introduction**

32 Tropical forests and their soils are an important part of the global carbon (C) cycle, because they
33 contain 692 Pg C (two thirds in evergreen and one third in deciduous forests), equivalent to 66 % of
34 the C in atmospheric CO₂ (Jobbagy and Jackson 2000). Carbon in tropical forest soils is dynamic;
35 Schwendenmann and Pendall (2008) reported a turnover time of 15 years for the 'slow' pool of soil C
36 (38 % of the total soil C; 61% of total soil C was 'passive' with a turnover time of the order of a
37 thousand years) in the top 10 cm of soil in semi-evergreen rain forest on Barro Colorado Island,
38 Panama. Turner et al. (2015) reported an approximate 25% increase in soil C from one dry season to
39 the next wet season in the top 10 cm of soil on the Gigante Peninsula in Barro Colorado Nature
40 Monument, Panama; a site near where the current litter manipulation experiment was carried out.

41 Thus, there is the potential for the amount of C in tropical soils to change over only a few years, with
42 potentially important consequences for atmospheric CO₂ concentrations.

43 Atmospheric CO₂ concentrations, and temperature, have been steadily increasing for
44 decades, one of the effects of this could be widespread increases in forest growth (Nemani et al.
45 2003) and as a result increased litterfall. Few experimental studies of the effects of elevated CO₂ on
46 forest growth have been done; Korner (2006) reported that elevated CO₂ caused increased litterfall
47 in one of three studies in steady-state tree stands in temperate forests; there have been no such
48 studies in the tropics. Thus the potential exists for increased CO₂ to increase forest growth and
49 litterfall – though we do not know how widespread and how large any increase in litterfall might be,
50 especially in the tropics.

51 Soil C has been shown to respond to experimental changes in litter inputs. In three studies in
52 temperate forests in the USA, litter removal always resulted in lower soil organic carbon, but litter
53 addition had much more variable effects, increasing in one (Lajtha et al. 2014a), not changing in the
54 second (Bowden et al. 2014) and decreasing in the third (Lajtha et al. 2014b). The single study from
55 the tropics, in lowland rain forest in Southwestern Costa Rica, reported decreased soil C in LR and
56 increased soil C in LA (Leff et al. 2012). It is therefore likely that many, but not all, forests will show
57 increased C in soils as a result of increased litter input.

58 The relative importance of aboveground or below ground inputs as sources of soil organic
59 matter has been reassessed in the last decade (Schmidt et al. 2011). Recently it was shown that 50-
60 70 % of the soil organic matter in boreal coniferous forest is from roots and root associated micro-
61 organisms (Clemmensen et al. 2013). The origin of the soil organic matter is thus a question of the
62 relative contributions of above-ground and below-ground inputs, how much of this is from microbes.
63 Litter manipulation experiments can provide insights into this issue by controlling one source of C
64 input – aboveground litterfall.

65 Soil nutrients as well as C can change as a result of increasing or decreasing litter inputs and
66 are important because they will potentially affect soil fertility. In Panama, mineralization of organic P
67 in only the top 2 cm of soil following three years of litter removal was calculated to be sufficient to
68 supply 20% of the P needed to sustain forest growth – there were corresponding increases in organic
69 P in litter addition plots; total nitrogen (N) showed a similar pattern (Vincent et al. 2010). ‘Available’
70 nutrients, including KCl-extractable ammonium (NH₄) and nitrate (NO₃), and Mehlich-III extractable
71 phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and micronutrients all changed over 4
72 years in the upper 2 cm of soil as a result of litter manipulation (Sayer and Tanner 2010). After six
73 years of litter manipulation surface soils (0-10 cm) had lower NO₃ and K in litter removal plots, and
74 higher NO₃ and Zn in litter addition plots; other nutrients were not significantly affected (Sayer et al.
75 2012). In Costa Rica after 2.5 years of litter manipulation surface soils (0-10 cm) had lower
76 nitrification in both litter removal and addition treatments, while NH₄ concentrations were
77 significantly lower in litter removal plots (NH₄ was 83-91% of the extractable N; Weider et al. 2013).
78 Thus, several soil nutrients in surface soils have been shown to change as a result of litter
79 manipulation but there is no consistent pattern for N, very little data for P or cations (the latter were
80 not reported for the Costa Rican experiment), and no data for soils deeper than 10 cm.

81 Here we report results from the Gigante Litter Manipulation Plots (GLiMP) experiment over
82 a much greater soil depth (0–200 cm) for total C, N, and P, and extractable (‘plant-available’) N, P, K,
83 Ca, Mg, manganese (Mn), and zinc (Zn), measured after 6 years of continuous litter transfer. In
84 addition, we present a new way of expressing soil C (relative to the unchanging mineral mass), which
85 allows us to calculate overall changes in soil C and other elements independently of changes in bulk

86 density. Our objective was to describe changes in C and nutrient concentrations in the full soil profile
87 and to calculate C budgets to discover what happens to the increased C input in litter addition plots.
88 In particular, we aimed to calculate the proportion of the added C that remains in the soil and the
89 litter standing crop, and can thus be considered as partial mitigation for increased forest productivity
90 due to increased atmospheric CO₂ and temperature – mitigation because C that is not in the soil will
91 be in the atmosphere as extra CO₂. No other study has tried to quantify the fate of C in organic
92 matter added to tropical forest soils; though a study of agricultural soil in temperate UK calculated
93 that about 2.4% of organic matter in yearly-added farmyard manure was still in the soil after 120
94 years (Powlson et al. 2011).

95 **2 Materials and methods**

96 “The study was carried out as part of an ongoing long-term litter manipulation experiment to
97 investigate the importance of litterfall in the C dynamics and nutrient cycling of tropical forests. The
98 forest under study is an old-growth semi-evergreen lowland tropical forest, located on the Gigante
99 Peninsula (9°06'N, 79°54'W) of the Barro Colorado Nature Monument in Panama, Central America.
100 The soil is an Oxisol with a pH of 4.5–5.0, with low ‘available’ P concentration, but high base
101 saturation and cation exchange capacity. Nearby Barro Colorado Island (c. 5 km from the study site)
102 receives a mean annual rainfall of 2600 mm and has an average temperature of 27°C. There is a
103 strong dry season from January to April with a median rainfall of less than 100 mm per month;
104 almost 90 % of the annual precipitation occurs during the rainy season. Fifteen 45-m x 45-m plots
105 were established within a 40-ha area (500 x 680-m) of old growth forest in 2000. In 2001 all 15 plots
106 were trenched to a depth of 0.5 m in order to minimize lateral nutrient- and water movement via
107 the root/mycorrhizal network; the trenches were double-lined with plastic and backfilled. Starting in
108 January 2003, the litter (including branches <20 mm in diameter) in five plots was raked up once a
109 month, resulting in low, but not entirely absent, litter standing crop (L- plots). The removed litter
110 was immediately spread on five further plots (L+ plots); five plots were left as controls (CT plots). The
111 assignment of treatments was made on a stratified random basis, stratified by total litterfall per plot
112 in 2002, i.e. the three plots with highest litterfall were randomly assigned to treatments, then the
113 next three and so on.” (Sayer et al. 2007). The plots were geographically blocked, litter from a
114 particular LR plot was always added to a particular LA plot and there was a nearby control plot.

115 Soils samples were collected in January 2009, the early dry season, using a 7.6 cm diameter
116 corer for the top 20 cm of soil and 2.5 cm diameter auger from 20 – 200 cm. Soil mineral
117 concentrations. Fresh-soil extracts for mineral nutrients were prepared within 24 h of collection
118 (except for NO₃ and NH₄, which were extracted within 2 hours of sampling in a 2 M KCl solution) and
119 determined by automated colorimetry; soil P and cations were determined by Mehlich III extraction
120 and analyzed by ICP-OES, soil pH was measured on a 1:2 fresh soil solution in distilled water. Dried
121 and ground soil was analyzed for total C and N by combustion and gas chromatography on a Flash
122 1112 analyzer (Thermo, Bremen, Germany). Total P was determined by ignition at 550°C for 1 h and
123 extraction for 16 h in 1 M H₂SO₄, with detection by automated molybdate colorimetry at 880 nm
124 using a Lachat Quikchem 8500 (Hach Ltd, Loveland, CO).

125 Nutrient data was analysed using mixed effects models, with ‘litter treatment’, ‘depth’, and
126 their interaction as fixed effects, and ‘plot’ as a random effect. Where nutrient concentrations varied
127 non-linearly with depth, we used splines with two or three knots. Some nutrients showed severe
128 heteroscedascity, and we accounted for this in the model by using ‘variance covariates’, which
129 model the variance as a function of one or more of the effects in the model (Pinheiro and Bates
130 2000; Zuur et al. 2009). For all nutrients, depth was modelled as a numeric predictor and log
131 transformed prior to analysis. We performed model selection based on likelihood ratio tests and

132 Aikake Information Criterion with correction for small sample sizes (AICc, Burnham and Anderson
133 2002). We derived P-values for fixed effects by comparing null models to full models using likelihood
134 ratio tests. Final models were refitted using restricted maximum likelihood estimation (REML) (Zuur
135 2009). Where the treatment * depth term was significant, we refitted the model omitting either the
136 litter addition treatment or the litter removal treatment to assess the contribution of each of the
137 treatments (litter addition and litter removal) to the overall interaction term. Analyses were done in
138 R version 3.1.2.

139 Soil total carbon and total nitrogen amounts were also calculated relative to soil mineral
140 mass to allow comparisons between the treatments where bulk density and soil depth was changing
141 due to removal and addition of litter; soil in litter removal plots was shrinking and had increasing
142 bulk density, soil in litter addition plots was increasing in depth and had lower bulk density.
143 Expressing potentially changing elements relative to unchanging mineral mass allows for change to
144 be expressed against an unchanging reference; it is analogous to expressing soil water relative to soil
145 dry mass rather than soil fresh mass. Soil organic C with depth was calculated for each plot by fitting
146 a line to cumulative soil organic C (Y) against cumulative soil mineral mass (X). Bulk density data
147 were measured for each plot only in the top 0-5 cm for soil. Below that we used bulk density data for
148 one pit only. Bulk density below 10 cm depth does not vary much across the site; data for four soil
149 pits (not in any of the plots) have a coefficient of variation of about 10 % for soils from 10 - 20 cm
150 deep and 3 % for soils from 20-50 cm deep), whereas coefficients of variation of bulk densities in
151 surface 0-5 cm soils were higher: control 12 %, LA 15 % and LR 4.9 %. Bulk density data were used to
152 estimate approximate soil depth for control plots in Fig. 4. Statistical comparisons of modelled
153 cumulative total C against cumulative mineral matter were compared by bootstrapping, using R
154 version 3.1.2.

155

156 **3 Results**

157 Soils in LA plots, compared to LR plots, had significantly higher: NO₃ and pH (to 30 cm); P_{Meh} and total
158 C (both to 20 cm); total N (to 15 cm); Ca (to 10 cm); Mg and lower bulk density (both to 5 cm), (Figs 1
159 and 2 and Table S1). When compared to control soils, there were fewer differences, LA soils had
160 higher concentrations of P_{Meh} (to 20 cm); NO₃ (to 15 cm); Ca (to 10 cm); and pH (to 10 cm). LR soil
161 nutrient concentrations were not significantly lower than those in controls. Nutrient concentrations
162 in soils > 30 cm deep did not differ significantly for any nutrient. Thus, in some way total C, total N,
163 NO₃, P_{Meh}, Ca and Mg were significantly affected by litter removal or addition, but K, Mn, NH₄, Zn
164 and were not; effect sizes (log response ratio for 0-5 cm soils) decreased from 0.81 for NO₃, to 0.39
165 for Ca, 0.27 for Zn, 0.20 for P_{Meh}, 0.20 for Mg, 0.15 for C_{tot}, 0.11 for N_{tot}.

166 All nutrients decreased in concentration with increasing soil depth. In control soils,
167 concentrations at 50–100 cm compared to 0–5 cm were: NH₄ 50 %, Mg 37 %, P_{tot} 36 %, K 32 %, P_{Meh}
168 25 %, NO₃ 24 %, N_{tot} 12 %, Ca 11 % and C_{tot} 11 %; NO₃ was only 24 % of the total inorganic N in
169 controls (mean over all depths) (Figs 1 and 2 and Table S1). Concentrations of most elements
170 continued to decrease below 100 cm deep in the soil; those from 150–200 cm were about half those
171 from 50–100 (ranging from 14% for Ca to 81% for NH₄, Table S1).

172 Soil bulk density in the top 5 cm was significantly lower in LA than LR, though neither was
173 significantly different from the controls. Soil C stocks standardized to a consistent mineral mass (*i.e.*
174 that in the control plots) was significantly greater in LA compared to LR to about 10 cm deep in the
175 soil (Figs 3 and 4). Total N per mineral mass of soil was also significantly greater in LA than LR in

176 approximately the top 10 cm of soil. In contrast, C:N ratios changed little with depth; in control soils,
177 C:N was about 10.5 near the surface and 10.0 at 150–200 cm, in LR plots, C:N was 10.5 at the surface
178 and 10.3 at depth, while LA soils were more variable, with C:N being 11.7 at the surface and about
179 10.0 at 150–200 cm deep.

180

181 **4 Discussion**

182 **4.1 Soil carbon dynamics**

183 The amount of C ‘missing’ from LR and ‘extra’ in the LA over about the top 20 cm of soil
184 (from calculations based on C per mineral matter), six years after litter removal and addition started
185 (January 2009), was about 0.5 kg C m⁻² (Fig. 3). The similarity of the losses from LR and gains in LA
186 probably has different causes: we speculate that losses from the soil in the LR plots are due to
187 respiration being greater than additions; we did not physically remove organic matter from the
188 mineral soil. We further speculate that increases in C in the mineral soil in the LA plots are a result of
189 infiltration of dissolved and suspended organic matter draining from the litter standing crop, and/or
190 changes in root exudates; increases in root growth are not the explanation – root growth was lower
191 in LA plots (Sayer et al. 2006).

192 In addition to the extra *soil* C in the LA plots the litter standing crop (LSC) was also higher in
193 LA plots; in September 2005 (2.8 years after litter manipulation started) there was 0.4 kg C m⁻² extra
194 in the Oi and Oe layers compared to control plots (Sayer and Tanner 2010) and data from 2013 show
195 that LSC was at about this level (C. Rodtassana in prep.). Together this extra 0.9 kg C m⁻² in the LA
196 soil and litter standing crop is about 30 % of the 3 kg C m⁻² in litter added to the LA plots over 6 years
197 (litterfall is c.1 kg m⁻² yr⁻¹, c. 45 % is C, times 6 years). This increase in C in surface soil and the litter
198 standing crop could be interpreted as *potential* partial mitigation of the effects of increasing CO₂
199 concentrations in the atmosphere, though any increases in litterfall due to increased CO₂ will be less
200 than our experimental doubling (a free air CO₂ experiment in 13-year old loblolly pine plantation in
201 North Carolina U.S.A reported a 12% increase in litterfall over 9 years (Lichter et al 2005 and 2008)).

202 The increases in soil C in our LA plots (c. 1% per year, of total C to c. 20 cm depth) are much
203 smaller than those reported in the other study of litter manipulation in tropical forest (lowland rain
204 forest in Southwestern Costa Rica) where two years of removing litter reduced soil C concentration,
205 in the top 10 cm of soil, by 26 % and doubling litter increased soil C by 31 % (Leff et al. 2012). In
206 three temperate forest studies rates of change in soil C were low; but they were measured over
207 much longer periods. In north central USA soil C content decreased by 61 % in litter removal plots
208 and increased by 33 % in double litter plots over a 50-year period (Lajtha et al. 2014a). In
209 Pennsylvania, USA, 20 years of removing litter reduced soil C by 24%, although the corresponding
210 litter doubling had no effect (Bowden et al. 2014). In deciduous forest in Massachusetts, USA, 20
211 years of LR also reduced mineral soil C (by 19%), but LA also resulted in lower mineral soil C (by 6%,
212 Lajtha et al. 2014b). Differences between forests in the effect of litter addition on soil organic matter
213 could be partly due to differences in priming of pre-existing soil organic C resulting in no, or small,
214 increases in soil C in double litter plots. Priming might be greater in N limited temperate forests
215 remote from atmospheric N pollution, because one cause of priming is mining of soil organic matter
216 for N by microbes stimulated by additions of litter with low N concentrations (relative to soil organic
217 matter) (e.g. Nottingham et al. 2015). It is therefore likely that many, but not all, forests will show
218 increased C in soils as a result of increased litter input.

219 Soil C may on average be composed more of C from roots than shoots (Rasse et al. 2005)
220 and that may be the case in our soils in Panama because although changes in litter inputs have
221 caused changes in soil C they are very small, c. 1% of total soil C per year, compared to the 'normal'
222 turnover of C of 25% (0-10 cm soil) within 6 months - as calculated from changes in C concentration
223 from wet season to dry season (Turner et al. 2015), and an annual turnover of about 7% based on
224 incorporation of ^{13}C into soils over decades (Schwendenmann and Pendall 2008). Other tropical
225 forest soils also had high turnover rates of C; in Eastern Brazil 40-50 % of the C in the top 40 cm of
226 soil had been fixed in about 32 years (Trumbore 2000). In Panama the much higher rates of turnover
227 of soil C as compared to changes caused by litter removal and addition suggest that the main source
228 of soil organic matter (over months to a few years) is roots, root exudates and mycorrhizal fungi.
229 Nevertheless, changes in above ground litter input are still important, because they have resulted in
230 overall decreases and increases in soil C.

231

232 **4.2 Litter manipulation - depth of effects.**

233 Effects of litter removal and addition differed among nutrients and were strongest near the soil
234 surface, with no significant differences below 30 cm. The strength of the effects and the depth to
235 which they were significant are increasing with time. Four years after the start of litter manipulation
236 six nutrients showed significant effects in the upper 2 cm of soil (NO_3 , NH_4 , P_{Meh} , K, Ca, Mg), whereas
237 only NO_3 and Ca showed significant effects from 0-10 cm (Sayer et. al 2010). After 6 years, in the
238 early dry season 2009 (current paper), effects were seen to greater depths: NO_3 was higher to 30 cm
239 and P_{meh} , to 20 cm in LA plots. Over time significant differences have become apparent for more
240 nutrients and to greater depth in the soil; these differences were caused by differences in litter
241 input.

242 The concentrations of NH_4 and NO_3 are usually only measured in surface soils in tropical rain
243 forests, perhaps because N is generally thought not to limit growth in such forests; though
244 fertilization with N and K together increased growth of saplings and seedlings in the Gigante
245 Fertilization Project (GFP), which was adjacent to our litter manipulation experiment in Panama
246 (Wright et al. 2011). Relevant concentrations of NH_4 and NO_3 are also difficult to measure since they
247 change rapidly over only a few hours (Turner and Romero 2009); extractions for the current paper
248 were done within two hours of collecting soils. In our litter manipulation experiment NH_4 accounted
249 for 76% of the sum of NH_4 and NO_3 (mean over all depths in controls plots) and decreased less with
250 depth than NO_3 (at 50-100 cm NH_4 was about 50 % of surface values whereas NO_3 was about 25 %).
251 In the GFP Koehler et al. (2012) reported that NH_4 also decreased less with depth (at 200 cm it was 41
252 % of surface soils) than NO_3 (to 17 % of surface soils), and that NH_4 was the dominant form of total
253 inorganic N (about 80 %) – the same patterns as in our litter manipulation experiment. Nitrogen
254 dynamics in soils have also been measured in a litter manipulation experiment in Costa Rica (Wieder
255 et al. 2013), where nitrification rates were lower in both LR and LA plots and extractable NH_4 was
256 significantly lower in LR plots. This contrasts with our results of greater NO_3 in LA compared to LR
257 and no effect on NH_4 ; the differences between the experiments may be partly due to somewhat
258 different soils and a wetter climate in Costa Rica (c. 5 m rain per year c.f. 2.6 in Panama). Thus, soil N
259 dynamics differ somewhat between the only two tropical litter manipulation experiments, but in
260 both NH_4 was the dominant form of inorganic N, and in both total inorganic N decreased in LR plots
261 and increased in LA plots (though differences were not always statistically significant).

262 The 'available' forms of P are also not often reported for the deeper horizons of tropical
263 forest soils, despite the fact that P is usually regarded as the most likely limiting nutrient in such

264 forests (Tanner et al. 1998 and Cleveland et al. 2011) and has been shown to limit fine litter
265 production in the adjacent Gigante Fertilizer experiment (Wright et al. 2011). Mehlich P and total P
266 both decreased with depth in control soils in our litter manipulation experiment (to 25 and 29 % of
267 near surface values); in LR soils the decrease was less steep (37 % and 36 %). LA increased Mehlich P
268 in the surface soils (though total P was not higher), indicating increased P availability, which is
269 consistent with the finding that LA decreased the strength of phosphate sorption in these soils
270 (Schreeg et al. 2013). Thus for P, potentially the most commonly limiting nutrient in tropical rain
271 forest soils, six-years of continuous removal and addition of litter in our experiment has reduced and
272 increased 'available' P down to 20 cm in the soil.

273 The relative amounts of exchangeable cations and their change with depth in the control
274 plots of the Panamanian litter manipulation soils are similar to patterns in other tropical forest soils.
275 In our experiment, Ca concentrations (in centimoles of charge) are about twice those of Mg in
276 surface soils (though below 30 cm Mg to Ca ratios exceed 1); K concentrations are usually less than 5
277 % of the sum of exchangeable Ca, Mg and K. With increasing depth Ca, Mg and K concentrations all
278 decrease, with Ca decreasing more than Mg or K. Other tropical forest soils are similar; in 19 profiles
279 throughout Amazonia the sum of base cations (Ca, Mg, K) was usually dominated by exchangeable
280 Ca (11 cases) or Ca was equal to Mg (4 cases), and both Ca and Mg mostly decreased with depth,
281 while K was in low or in trace concentrations in all profiles (Quesada et al. 2011). In Hawaii (Porder
282 and Chadwick 2009), much younger soils (11,000 BP on lava), with much higher concentrations of
283 Ca, Mg and K than Panama and Amazonia, showed similar patterns: Ca was the dominant cation, K
284 was usually less than 5 % of the sum of exchangeable Ca, Mg and K, and all cations decreased with
285 depth at the wetter sites (but not in the drier sites). Thus in most wet tropical forest soils, Ca is the
286 most abundant cation and most cations decrease with depth. Litter addition in Panama increased Ca
287 and Mg concentrations in the surface soils and thus steepened the depth gradient, whereas litter
288 removal decreased Ca and Mg and therefore decreased the gradient; K was at much lower
289 concentrations (as in Amazonia and Hawaii) and was not affected by LA and LR even in 0-5 cm soils.

290 **4.3 Design of litter manipulation experiments**

291 The design of litter manipulation experiments needs to be carefully considered when
292 evaluating their results; the strength of the effect of litter manipulation on soil C in Panama was
293 much less than that in Costa Rica. The Panamanian and Costa Rican experiments are very different in
294 spatial scale. Plots in Panama are large, 45 x 45 m, those in Costa Rica are small, 3 x 3 m. The small
295 plots are 'hot' and 'cold' spots relative to large individual tree crown areas (and likely tree root
296 areas); crowns of the largest trees in lowland rain forests are commonly 25 m in diameter, so a 3 x 3
297 m plot is 2 % of that area. These differences in experimental design and their effects on the pattern
298 of the results should be considered when trying to understand ecosystem level processes; small hot
299 and cold spots may not represent what would happen in plots on the scale of the large trees.

300

301 **5 Conclusions**

302 The increase in C in the mineral soil and the litter standing crop following litter addition was
303 statistically significant in the top 20 cm of the soil, suggesting that any increased litterfall as a result
304 of increased atmospheric CO₂ and/or temperature could result in a substantial increase in soil C and
305 therefore partially mitigate the increase in atmospheric CO₂. However, the current experiment
306 added much more litter than might be produced by an increase in CO₂ of, say, 200 ppm, and added
307 more nutrients than might occur even in polluted sites. Thus new experiments are required to

308 investigate the effects of more realistic increases in litterfall using litter with low nutrient
309 concentrations.

310 Supplementary material

311 Table S1 with full original data from soil analyses

312 Table S2 Model estimates of concentrations (from Sheldrake)

313 *Acknowledgements.* We thank J. Bee, L. Hayes, S. Queenborough, R. Upson and M. Vorontsova for
314 surveying the plots, J Bee for setting up the experiment in 2000 and 2001; E. Sayer for running the
315 experiment from 2001-2009; A Vincent for helping to maintain the experiment from 2003-2005. T.
316 Jucker did the statistics to compare the effect of treatment on soil C relative to mineral matter.
317 Funding for the project was originally from the Mellon Foundation (1999-2002); on-going costs were
318 paid for by the Gates-Cambridge Trust (E Sayer); The University of Cambridge Domestic Research
319 Studentship Scheme and the Wolfson College Alice Evans Fund (A. Vincent); The Drummond Fund of
320 Gonville and Caius College and Cambridge University (E. Tanner). The whole of the experiment
321 depended on the continuous raking of litter; which was done by Jesus Valdez and Francisco Valdez.
322 S.J. Wright has been a frequent source of help for many aspects of the experiment.

323

324 **References**

325 Bowden, R. D., Deem, L., Plante, A. F., Peltre, C., Nadelhoffer, K. and Lajtha, K.: Litter input controls
326 soil carbon in temperate deciduous forest, *Soil Sci. Soc. Am. J.*, s66-s75, 2014.

327 Burnham, K. P. and Anderson, D. R.: Information and likelihood theory: a basis for model selection
328 and inference, in: *Model Selection and Multimodel Inference*, edited by: Burnham K. P., and
329 Anderson, D. R., Springer New York, 49–97, 2002.

330 Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J. Finlay,
331 R. D., Wardle, D. A., and Lindahl, B. D.: Roots and associated fungi drive long-term carbon
332 sequestration in boreal forest, *Science* 339, 1615-1618, 2013.

333 Cleveland, C. C., Townsend, A. R., Taylor, P., Alvrez-Clare, S., Bustamante, M. M. C., Chuyong, G.,
334 Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed,
335 S. C., Sierre, C. A., Silver, W. L., Tanner, E. V. J., and Wieder, W. R.: Relationships among net primary
336 productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis, *Ecol. Lett.*, 14, 939-
337 947, 2011.

338 Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to
339 climate and vegetation, *Ecol. Appl.*, 10, 423-436, 2000.

340 Koehler, B., Corre, M. D., Steger, K., Well, R., Zehe, E., Sueta, J. P., and Veldkamp, E.: An in-depth
341 look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N₂O, CO₂ and CH₄
342 and N₂O isotopic signatures down to 2-m depth, *Biogeochemistry*, 111, 695-713, 2012.

343 Körner, C. Plant CO₂ responses: an issue of definition, time and resource supply, *New Phytol.*, 172,
344 393-411, 2006.

345 Lajtha, K., Townsend, K. L., Kramer, M. G., Swanston, C., Bowden, R. B. and Nadelhoffer, K.: Changes
346 to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and
347 prairie experimental ecosystems, *Biogeochemistry* 119, 341-360, 2014a.

348 Lajtha K., Bowden R. D., Nadelhoffer K.: Litter and root manipulations provide insights into soil
349 organic matter dynamics and stability, *Soil Sci. Soc. Am. J.*, 78, s261–s269, 2014b.

350 Leff, J. W., Wieder, W. R., Taylor, P. G., Townsend, A. R., Nemergut, D. R., Grandy, A. S. and
351 Cleveland, C. C.: Experimental litterfall manipulation drives large and rapid changes in soil carbon
352 cycling in a wet tropical forest, *Glob. Change Biol.*, 18, 2969-2979, 2012.

353 Lichter, J., Barron, S. H., Bevacqua, C. E., Finzi, A. E., Irving, K. F., Stemmler E. A., and Schlesinger, W.
354 H.: Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO₂
355 enrichment, *Ecology*, 86, 1835-1847, 2005.

356 Lichter, J., Billings, S. A., Ziegler, S. E., Gaindh, D., Ryals, R., Finzi, A. C., Jackson, R. B., Stemmler, E. A.
357 and Schlesinger, W. H.: Soil carbon sequestration in a pine forest after 9 years of atmospheric CO₂
358 enrichment, *Glob. Change Biol.*, 14, 2910-2922, 2008.

359 Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B. and
360 Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to
361 1999, *Science*, 300, 1560-1563, 2003.

362 Nottingham, A. T., Turner, B. L., Stott, A. W. and Tanner, E. V. J.: Nitrogen and phosphorus constrain
363 labile and stable carbon turnover in lowland tropical forest soils, *Soil Biol. Biochem.*, 80, 26-33, 2015.

364 Pinheiro, J. and Bates, D., *Mixed-effects Models in S and S-PLUS*, Springer, New York. 548 pp., 2000.

365 Porder, S and Chadwick, O. A.: Climate and soil-age constraints on nutrient uplift and retention by
366 plants, *Ecology*, 90, 623-636, 2009.

367 Powelson, D. S., Whitmore, A. P. and Goulding, K. W. T.: Soil carbon sequestration to mitigate climate
368 change: a critical re-examination to identify the true and the false, *Eur. J. Soil Sci.*, 62, 42-55, 2011.

369 Quesada, C. A., Lloyd J., Anderson L. O., Fyllas N. M., Schwarz M., and Czimczik C. I.: Soils of
370 Amazonia with particular reference to the RAINFOR sites, *Biogeosciences*, 8, 1415–1440, 2011.

371 Rasse, D. P., Rumpel, C. and Dignac, M-F.: Is soil carbon mostly root carbon? Mechanisms for a
372 specific stabilisation, *Plant Soil*, 269, 341-356, 2005.

373 Sayer, E. J., Heard, M. S., Grant, H. K. Marthews, T. R. and Tanner E. V. J.: Soil carbon release
374 enhanced by increased tropical forest litterfall, *Nature Clim. Change*, 1, 304-307, 2010.

375 Sayer, E. J., Powers, J. S. and Tanner, E. V. J.: Increased litterfall in tropical forests boosts the transfer
377 of soil CO₂ to the Atmosphere, *PLoS ONE* 2(12): e1299, 2007

378 Sayer, E. J. and Tanner, E. V. J.: Experimental investigation of the importance of litterfall in lowland
379 semi-evergreen tropical forest nutrient cycling, *J. Ecol.*, 98, 1052-1062, 2010.

380 Sayer, E. J., Tanner, E. V. J. and Cheesman, A. W.: Increased litterfall changes fine root distribution in
381 a moist tropical forest, *Plant Soil*, 281, 5-13, 2006.

382 Sayer, E. J., Wright, S. J., Tanner, E. V. J., Yavitt, J. B., Harms, K. E., Powers, J. S., Kaspari, M., Garcia,
383 M. N., and Turner, B. L.: Variable responses of lowland tropical forest nutrient status to fertilization
384 and litter manipulation, *Ecosystems*, 15, 387-400, 2012.

385 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M.,
386 Kogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and

387 Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, *Nature* 478, 49-56,
388 2011.

389 Schreeg, L. A., Mack, M. C. and Turner, B. L.: Leaf litter inputs decrease phosphate sorption in a
390 strongly weathered tropical soil over two time scales, *Biogeochemistry*, 113, 507-524, 2013.

391 Schwendenmann, L. and Pendall, E.: Response of soil organic matter dynamics to conversion from
392 tropical forest to grassland as determined by long-term incubation, *Biol. Fert. Soils*, 44, 1053-1062,
393 2008.

394 Tanner, E. V. J., Vitousek, P. M., and Cuevas, E.: Experimental investigation of nutrient limitation of
395 forest growth on wet tropical mountains, *Ecology*, 79, 10-22, 1998.

396 Trumbore, S. E.: Age of soil organic matter and soil respiration: radiocarbon constraints on
397 belowground C dynamics. *Ecol. Appl.*, 10, 399-411, 2000.

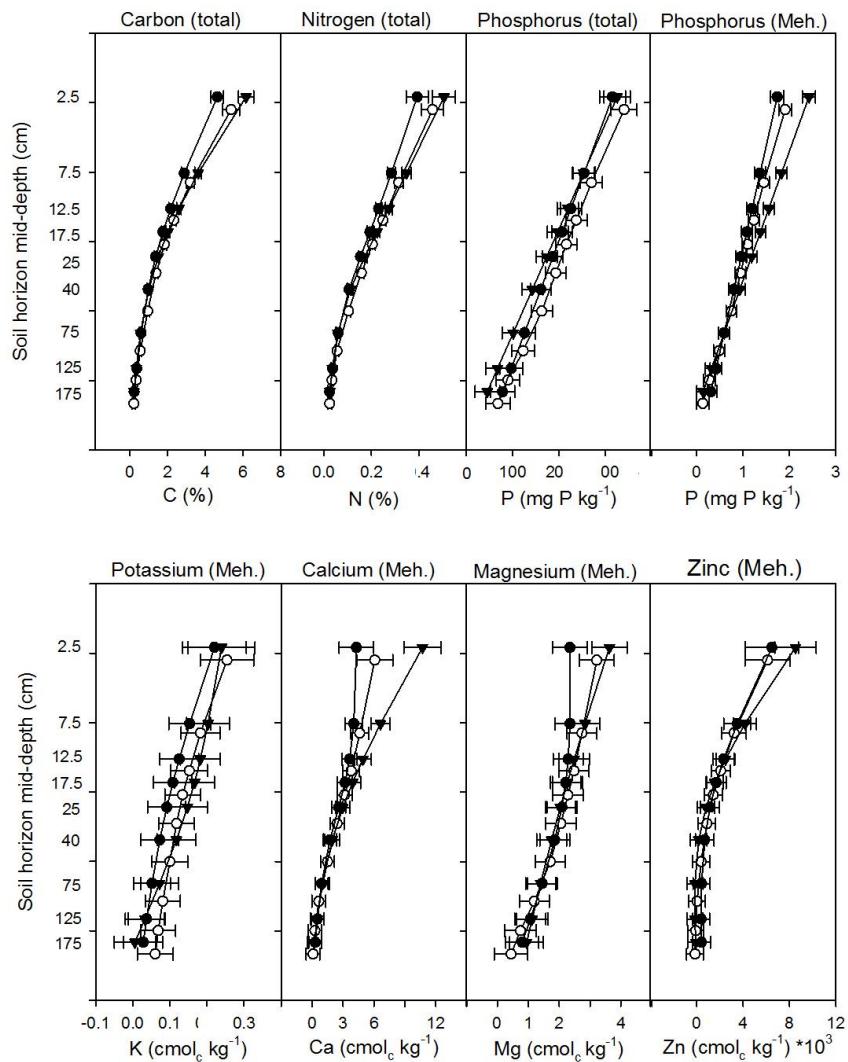
398 Turner, B. L. and Romero, T. E.: Short-term changes in extractable inorganic nutrients during storage
399 of tropical rain forest soils, *Soil Sci. Soc. Am. J.*, 73, 1972-1979, 2009.

400 Turner, B. L., Yavitt, J. B., Harms, K. E., Garcia, M. and Wright, S. J.: Seasonal changes in soil organic
401 matter after a decade of nutrient addition in a lowland tropical forest, *Biogeochemistry*, 123, 221-
402 235, 2015.

403 Vincent, A. G., Turner, B. L. and Tanner, E. V. J.: Soil organic phosphorus dynamics following
404 perturbation of litter cycling in a tropical moist forest. *Eur. J. Soil Sci.*, 61, 48-57, 2010.

405 Weider, W. R., Cleveland, C. C., Taylor, P. G., Nemergut, D. R., Hinkley, E-L., Philippot, L., Bru, D.,
406 Weintraub, S. R., Martin, M., and Townsend, A. R.: Experimental removal and addition of leaf litter
407 inputs reduces nitrate production and loss in a lowland tropical forest, *Biogeochemistry* 113, 629-
408 642, 2013.

409 Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J., Sayer, E. J. Santiago, L. S.,
410 Kaspari, M., Hedin, L. O., Harms, K. E., Garcia, M. N. and Corre, M. D.: Potassium, phosphorus, or
411 nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest, *Ecology*,
412 98, 1616-1625, 2011.

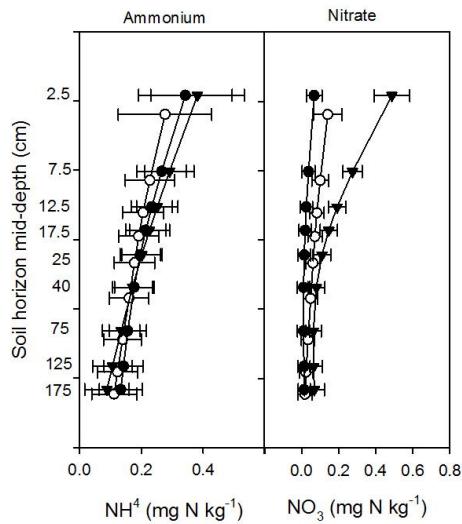

413 Zuur, A.F., Leno, E. N., Walker, N., Saveliev, A.A. and Smith, G. M. *Mixed Effects Models and*
414 *Extensions in Ecology with R*, Springer, New York. 574 pp., 2009

415

416

417

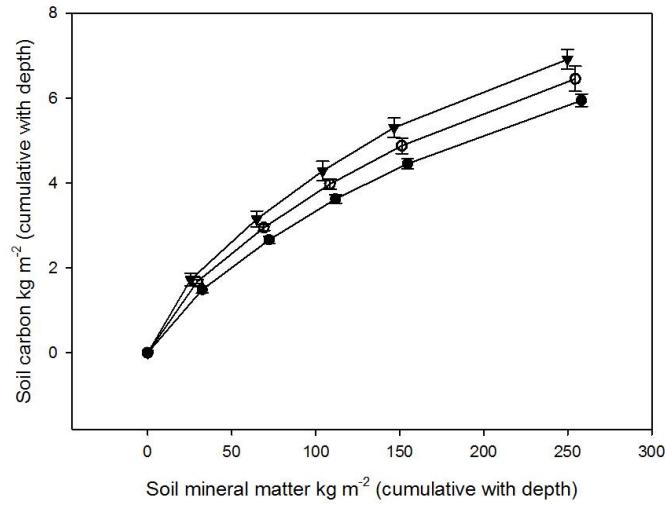
418


419

420 Fig. 1 Concentrations of soil C, N, P (various fractions) and cations (Mehlich extractions), plotted
 421 against the mid-point of the soil layers sampled (Zn values should be divided by 1000 to obtain
 422 actual means), control points are displaced below treatments. Data are fitted values of the mixed
 423 effects models with 95% confidence intervals (see Methods), in litter removal ●, control ○ and litter
 424 addition ▼ plots.

425

426


427

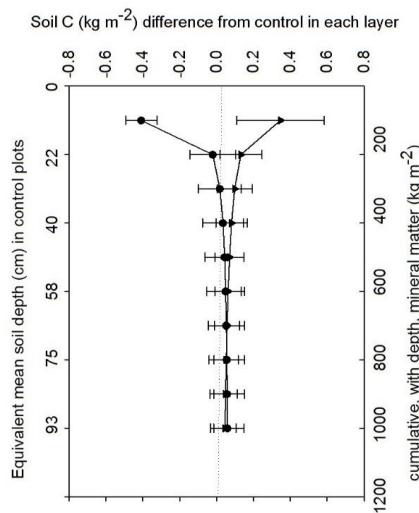
428 Fig. 2 Mean concentrations of ammonium and nitrate plotted against the mid-point of the soil layers
429 sampled, control points are displaced below treatments. Data are fitted values of the mixed effects
430 models with 95% confidence intervals (see Methods), in litter removal ●, control ○ and litter
431 addition ▼ plots.

432

433

434

435


436 Fig. 3 Soil carbon content and mineral content in litter addition, control, and litter addition
437 expressed as kg C m^{-2} cumulatively from 0 to 30 cm soil depth. Values are means for 5 plots per
438 treatment +/- SE, litter removal ●, control ○, and litter addition ▼.

439

440

441

442

443 Fig. 4 Differences in soil carbon content relative to control soils (mean and SE, n = 5), after 6 years of
 444 litter manipulation, plotted for successive soil layers: 0-100 kg (mineral matter) m⁻², plotted at 100 kg
 445 m⁻² on right y axis; 100-200 kg m⁻², plotted at 200 kg m⁻²; and so on to 900-1000 kg m⁻², plotted at
 446 1000 kg m⁻²; in litter removal ● and litter addition ▼ plots. We calculated the soil C in the LR and
 447 LA plots at the mineral mass equal to that at various depths in the control plots (0-5 cm, 5-10 cm,
 448 etc), we then calculated the difference in C between each litter removal (or litter addition) and its
 449 control plot for the same mineral mass. Approximate depth for cumulative soil mineral mass in
 450 control plots is shown on left y axis.

451